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Abstract: Previous tsunami evacuation simulations have mostly been based on arbitrary17

assumptions or inputs adapted from non-emergency situations, but a few studies have used18

empirical behavior data. This study bridges this gap by integrating empirical decision data19

from local evacuation expectations surveys and evacuation drills into an agent-based model20

of evacuation behavior for a Cascadia Subduction Zone community. The model also consid-21

ers the impacts of liquefaction and landslides from the earthquake on tsunami evacuation.22

Furthermore, we integrate the slope-speed component from Least-cost-distance to build the23

simulation model that better represents the complex nature of evacuations. The simulation24

results indicate that milling time and evacuation participation rate have significant non-linear25

impacts on tsunami mortality estimates. When people walk faster than 1 m/s, evacuation26

by foot is more effective because it avoids traffic congestion when driving. We also find that27

evacuation results are more sensitive to walking speed, milling time, evacuation participa-28

tion, and choosing the closest safe location than to other behavioral variables. Minimum29

tsunami mortality results from maximizing the evacuation participation rate, minimizing30

milling time, and choosing the closest safe destination outside of the inundation zone. This31

study’s comparison of the agent-based model and BtW model finds consistency between the32

two models’ results. By integrating the natural system, built environment, and social sys-33

tem, this interdisciplinary model incorporates substantial aspects of the real world into the34

multi-hazard agent-based platform. This model provides a unique opportunity for local au-35

thorities to prioritize their resources for hazard education, community disaster preparedness,36

and resilience plans.37
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1. Introduction38

Recent devastating earthquakes and tsunamis have placed immense burdens on their affected39

communities, such as the 2011 Tohoku tsunami (Mori et al., 2011), the 2009 American40

Samoa tsunami (Lindell et al., 2015), and the 2018 Indonesia Sulawesi tsunami (Sassa and41

Takagawa, 2019). Due to a small evacuation time window between the end of earthquake42

shaking and the arrival of the first tsunami wave, a high level of evacuation efficiency is43

essential for minimizing the loss of life in low-lying coastal communities (Wang et al., 2016;44

Raskin and Wang, 2017). To reduce evacuation clearance time (the sum of authorities’45

decision time, warning dissemination time, households’ preparation time, and evacuation46

travel time) and thus maximize survival rates during tsunamis, researchers and practitioners47

have developed evacuation simulations to support decision-making, public education, and48

community emergency planning and management.49

1.1. Previous ABMSs for Earthquake and Tsunami Evacuation50

Agent-based modeling and simulation (ABMS), as a type of highly effective computational51

simulation model, has been applied to many research fields (Mas et al., 2013; Mostafizi52

et al., 2019a). The unique characteristics of ABMS include a bottom-up structure and53

ability to model heterogeneous agents and their interactions with other agents. These unique54

characteristics meet the needs of disaster evacuation simulation (Gilbert, 2007). The bottom-55

up structure provides an opportunity to analyze how changes in evacuation behavior affect56

the overall evacuation result. One concern about using ABMS is the computational expense,57

but this is less of an issue as computing costs continue to decrease (Lindell et al., 2019).58

This increase in computational power has allowed disaster researchers to apply ABMS to59

1) simulate evacuation in large-scale communities and 2) integrate different layers of data60

to comprehensively analyze evacuation with consideration of interactions between the nat-61

ural environment, built environment, and social system. Table 1 identifies recent tsunami62

evacuation ABMS studies and their content.63

Table 1: Recent earthquake and tsunami ABMS studies

Author / Year Study Area Mode
Model Components

Tested Variables
Natural Environment Built Environment Social System

Chen and Zhan (2008) San Marcos, TX, USA Car N/A Road network; artificial safe zone
Hypothetical population density;
dynamic routing; car following model

Evacuation strategy

Dawson et al. (2011) Towyn, United Kingdom Car Flood inundation Road network; destination; building
Population distribution; warning time;
driving speed; re-route

Warning time; water depth

Karon and Yeh (2011) Cannon Beach, OR, USA Walk Tsunami inundation Road network; destinations
Warning dissemination; shortest distance;
travel speed

Infrastructure retrofitting strategy

Mas et al. (2012) Arahama village, Japan Car/Walk Tsunami inundation Road network; destinations
Population distribution; evacuation mode;
milling time; speed

Evacuation result compared with
real event; milling time; destination

Mas et al. (2013) La Punta, Peru Car/Walk Tsunami inundation Road network; destinations
Population distribution; social status;
evacuation mode; milling time; speed

Evacuation result; shelter capacity

Wang et al. (2016) Seaside, OR, USA Car/Walk Tsunami inundation Road network; destinations
Population distribution; milling time;
evacuation mode; speed; route choice

Water depth; milling time;
evacuation mode; destination location

Mostafizi et al. (2019a) Seaside, OR, USA Walk Tsunami inundation Road network; destinations Population distribution; milling time; speed Shelter location

In the absence of empirical behavioral data, early-stage evacuation ABMSs were based on64

arbitrary assumptions, as had been the case for large-scale evacuation models (Lindell and65

Perry, 1992; Lindell and Prater, 2007). Chen and Zhan (2008) investigated the effectiveness66

of simultaneous and staged evacuation strategies using an ABMS for San Marcos, Texas.67

Although this study considered evacuees’ car following and dynamic routing behaviors, it68

was based on many arbitrary assumptions about evacuation behavior. To reduce reliance69

on assumptions, Mas et al. (2012) built an evacuation ABMS that included more empirical70
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data from the natural system, built environment, and social system. In this model, agents71

are characterized by probabilistic distributions of milling time, evacuation mode choice,72

evacuation destination, and travel speed. By comparing the simulation with data from the73

2011 Japanese earthquake and tsunami, the authors concluded that the results from this74

simulation are consistent with the real event and can be used to analyze evacuation and75

shelter demand for future events. In 2013, Mas et al. (2013) expanded this ABMS to the76

city of La Punta, Peru to conduct a vertical and horizontal shelter analysis.77

Practitioners and researchers have relied on similarities between the 2011 Japanese earth-78

quake event and the geologically similar Cascadia Subduction Zone (CSZ) to encourage79

Oregon coastal residents to prepare for local tsunamis. Karon and Yeh (2011) used GIS to80

build an evacuation ABMS by integrating tsunami inundation, warning transmission, and81

travel speed to examine the impact of failures of critical infrastructure in Cannon Beach,82

Oregon. To model heterogeneous agent behaviors, Wang et al. (2016) established a scenario-83

based tsunami evacuation ABMS for Seaside, Oregon. This study examined the impact of84

variance in agent behaviors such as milling time, evacuation mode choice, and travel speed.85

In addition, it also included the impact of a tsunami, but not an earthquake, on the built86

environment such as damage to streets, bridges, and buildings. A later version of this study,87

Mostafizi et al. (2019a), used a similar ABMS platform to identify optimum shelter loca-88

tions considering the population distribution, heterogeneous agent milling time, and walking89

speed. However, as with previous studies, agents were assumed to evacuate to the closest90

shelter, which may not accurately represent people’s destination choices when threatened by91

a tsunami.92

One common limitation of those evacuation models is that they have evacuation assumptions93

about the four evacuation time components – authorities’ decision delay time, households’94

warning receipt and decision time, households’ evacuation preparation time, and households’95

evacuation travel time. Warning receipt time, for example, can vary across communities96

and households. Nagarajan et al. (2012) used an ABMS to test the warning dissemination97

speed through formal channels transmitted by officials and informal channels transmitted98

by neighbors. They found that even a small proportion of people who were willing to warn99

their neighbors has a considerable impact on reducing warning dissemination time. Several100

previous ABMS studies have also assumed arbitrary probability functions for milling time101

to represent the variance in evacuation departure times (Mas et al., 2012; Wang et al., 2016;102

Mostafizi et al., 2019a).103

In addition, some recent evacuation simulations have also employed assumptions about the104

distribution of evacuees’ walking speeds. For instance, Wang et al. (2016) and Mostafizi105

et al. (2019a) assumed a normal distribution of evacuee walking speeds for which the mean106

was built based on a study of pedestrians walking on streets in non-emergency situations107

(Knoblauch et al., 1996). This assumption is likely to underestimate travel speeds in a108

tsunami evacuation and thus overestimate tsunami mortality rates. However, mortality109

rates might not be overestimated if travel speed is actually reduced by additional barriers110

such as landslides, liquefaction, and other earthquake disturbances to the evacuation route111

system.112

Failure to consider “shadow evacuation” by residents of areas outside the tsunami inundation113

zone can lead to unnecessary evacuation that overwhelms the evacuation route system and114

impedes travel by people in the inundation zone (Lindell et al., 2019). Instead of assigning a115
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probabilistic distribution to walking speed, Wood and Schmidtlein (2012) used a determin-116

istic hiking function (Tobler, 1993) to define a least cost distance (LCD) model for tsunami117

evacuation. This hiking function captured the impact of slope on walking speed, but also118

assumed daily walking conditions rather than emergency conditions. Overall, existing evac-119

uation models have assumed that pedestrians’ travel behavior in daily situations represents120

the corresponding behavior in evacuations, but field or experimental data to confirm this121

assumption are needed.122

Most of the aforementioned studies used Census data to identify agents’ evacuation departure123

locations, so the scenarios assumed people were at home. However, a disaster may happen at124

any time of the day. To account for the variance in evacuees’ locations, Dawson et al. (2011)125

developed a flood management ABMS to support flood emergency planning and evaluate126

flood incident management measures. The authors used empirical survey data to integrate127

warning time and used the National Travel Survey to determine people’s locations and travel128

states (e.g., work, home, or school).129

1.2. Other Models for Earthquake and Tsunami Evacuation130

Although scenario-based ABMSs have been employed to support evacuation decision-making131

for entire communities (or large areas), jurisdictions are also interested in the question of how132

quickly people should evacuate from different sub-areas in a community. Geographers used133

the LCD method to build the Beat-the-Wave (BtW) model to estimate the maximum travel134

time that people need to walk out of a tsunami inundation zone (Wood and Schmidtlein,135

2012). This model defined the distance cost by two variables – the evacuation route’s slope136

and its land cover. To determine the walking speed, they employed Tobler’s hiking function137

(Tobler, 1993) and the energy cost of the terrain category (Soule and Goldman, 1972). The138

output of this model provides the spatial distributions of maximum evacuation times to139

“beat the wave”, and can be used for preparedness planning and education. The Oregon140

Department of Geology and Mineral Industries (DOGAMI) has implemented this model141

to identify Oregon coastal communities’ evacuation route maps and to estimate evacuation142

travel times (DOGAMI, 2020; Gabel et al., 2019).143

Although DOGAMI has used the LCD method because it is relatively easy to calculate and144

provides reasonable evacuation time estimates (ETEs), it does have some limitations. First,145

it cannot examine social system variables that influence tsunami evacuation outcomes (such146

as population distribution, milling time, and the choice of transportation mode, evacuation147

route, and evacuation destination). Second, it cannot incorporate dynamic travel costs due148

to crowding or congestion. Agent-based models can overcome those limitations but are149

sometimes criticized as difficult to implement due to the magnitude of data required. As150

noted earlier, those data include the distribution of population locations, evacuees’ behaviors,151

and wave-arrival time. However, the ABMS and LCD approaches are not incompatible so152

a mixed-method approach could be used to better model the complex nature of evacuation153

(Wood and Schmidtlein, 2012).154

1.3. Research Objectives and Questions155

The preceding literature review has revealed the need for an evacuation ABMS that can156

simultaneously consider the natural environment, built environment, and social system to157

analyze complex evacuation scenarios. Although some studies have incorporated layers from158

4

https://doi.org/10.5194/nhess-2021-370
Preprint. Discussion started: 13 December 2021
c© Author(s) 2021. CC BY 4.0 License.



those three systems, most of the data inputs were arbitrary assumptions – a problem that159

has plagued large scale evacuation modeling (Lindell et al., 2019). To more completely160

integrate the three systems, this study established an ABMS for tsunami evacuation that161

integrates 1) the natural environment and its disruptions; 2) the built environment and its162

disruptions; and 3) the social system, as defined by people’s protective actions – especially163

their evacuation behavior.164

Specifically, this ABMS integrates human decisions and evacuation logistics into an ABMS165

platform using empirical behavior data that were collected through survey questionnaires166

and evacuation drills from coastal residents facing tsunami threats. This integration opera-167

tionalizes the Protective Action Decision Model (PADM) (Lindell and Perry, 2012) within168

an ABMS by incorporating agents’ heterogeneous behavior in emergencies, such as 1) evac-169

uation participation; 2) choices of transportation mode, evacuation routes and destinations;170

and 3) travel speeds. Furthermore, to accurately model the complex nature of evacuation,171

this ABMS also includes the impact of landslides and liquefaction on the road network dur-172

ing evacuation. Incorporating the essential components of the LCD model (slope and road173

surface) combines the advantages of the ABMS and BtW models (Wood and Schmidtlein,174

2012). ABMS models are implemented for Coos Bay, Oregon and sensitivity analyses are175

conducted in this study to answer the following questions:176

1. How do the evacuation participation rate, milling time, mode choice, destination choice,177

and travel speed affect mortality rates?178

2. Which of these variables have greater impact on mortality rates and which of them179

can be addressed in tsunami evacuation preparedness?180

3. How do the results from the ABMS compare with the results from the BtW model?181

This interdisciplinary ABMS can not only serve as an evacuation planning tool for local182

agencies, but also can be an educational and assessment tool for coastal residents to better183

prepare for the next threat.184

2. Interdisciplinary Tsunami Evacuation ABMS185

2.1. Agent-based Modeling Environment186

Simulating evacuation is a computationally-intensive problem due to the large scale of the187

built and natural environments and the complexity of agent behaviors. Therefore, an ABMS188

typically has a high computational cost when applied to large scale evacuation (Lindell189

et al., 2019). To overcome this issue, the tsunami evacuation ABMS was built using the190

Julia programming language, which is a just-in-time compiled language, allowing for high191

performance and computational speed (Bezanson et al., 2012). The high speed of the Julia192

language allows researchers to model large communities with detailed heterogeneous agent193

behaviors. This study’s ABMS modeling environment allows users to modify parameters194

for natural, built, and social systems and also allows stochastic inputs. Figure 1 shows the195

ABMS visualization and real-time evacuation monitors. The details of the evacuation model196

environment are discussed in Section 2.3.197
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2.2. Study Area198

A series of CSZ tsunami evacuation studies have used Seaside, OR as a study community199

because of its high level of vulnerability to local tsunamis (Connor, 2005; Wood et al., 2015;200

Wang et al., 2016; Chen et al., 2020, 2021). However, other communities that differ from201

Seaside in their geographic and demographic characteristics should also be examined. This202

study chose the Coos Bay peninsula as a case study due to four features. First, it has a203

distinctly vulnerable geography. As Figure 1 indicates, this peninsula is surrounded by bay204

water on its north, east, and west sides. In addition, its hilly spine in the middle provides205

ready access to higher ground for evacuation destinations. The bay serves as the second206

and the sixth largest estuary in Oregon and on the US west coast, respectively (CLW,207

2015). Second, this community is located on the southern margin of the CSZ, where the208

rupture probability is higher and tsunami wave arrival time is shorter than communities209

farther north (Priest et al., 2014; Chen et al., 2021). Third, the Coos Bay peninsula has210

a total population of about 26,129, which is the largest population among Oregon coastal211

communities (United State Census Bureau, 2020). Moreover, a large proportion of the212

population (about 25%) resides within the inundation zone. Fourth, this community has a213

high level of social vulnerability due to its demographic characteristics. The local population214

has a higher percentage of disabled residents and is poorer and less educated than the overall215

U.S. population (United State Census Bureau, 2020; Chen et al., 2021).216

Residents
Destinations
Pedestrians
Cars

Figure 1: Simulation model visualization of Coos Bay, Oregon

2.3. Model Components217

To more accurately model tsunami evacuation, this study proposes an ABMS that integrates218

components of the natural environment, built environment, and social system. Specifically,219

this ABMS includes the components shown in Table 2.220
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Table 2: ABMS components

System Component Description Data sources

Natural environment
Tsunami inundation layer Water depth per 30 sec time frame (m) DOGAMI CSZ near-filed M9 XXL scenario
Elevation and slope Use elevation digital model to calculate slope Oregon 10m Digital Elevation Model (DEM)
Landslide and liquefaction Landslide and liquefaction susceptibility to identify disrupted roads DOGAMI Project O-13-06

Built environment
Road Network Links OpenStreetMap & Google Earth
Non-retrofitted bridges Manually identified by talking with local authorities DOGAMI Project O-19-07

Social System

Population distribution
26,000 agents US Census by census block group, then
randomly generate along transportation network

US Census

Evacuation participation By attributes or proportion (1: evacuate; 0: stay) Survey
Milling time Gamma distributions and a fixed time Survey
Mode choice Proportion, controlled by a parameter Survey

Destination choice
Probability distribution on the distance to shelter and
use soft-max function to calculate the discrete probability

Survey: distance from home to destination
separated by car/foot, gamma distribution

Evacuation speed – car IDM model with parameters and a speed limit Parameter chosen by common scenarios
Evacuation speed – foot Evacuation hiking function based on elevation Evacuation drills
Route choice Shortest distance to the destination that agents chose

Route diversion
If next intersection is blocked, the agent selects another
leg of the intersection, then chooses another destination

2.3.1. Social System and Agent Behavior221

According to the PADM, people make protective action decisions based on environmen-222

tal/social cues and warnings, which are affected by personal characteristics such as pre-223

existing beliefs about the hazard, protective actions, and community stakeholders (Lindell224

and Perry, 2012; Lindell, 2018). The large number of these variables, the difficulty in mea-225

suring them, and their heterogeneity among agents makes it difficult to model this part of the226

evacuation process (Mas et al., 2012). Previous evacuation simulation models (Mas et al.,227

2012; Wang et al., 2016; Mostafizi et al., 2017, 2019b) assumed that residents evacuate in the228

most efficient manner (such as selecting the closest shelter), but ignored the heterogeneity229

in evacuation decisions and actions (Gwynne et al., 1999). One main reason is that these230

models lacked empirical data on evacuation decisions and actions. To fill that gap, the evac-231

uation model in this study integrates data on people’s evacuation decisions and actions that232

were collected from questionnaire surveys and evacuation drills.233

This study employed the PADM as the framework for a mail-based household question-234

naire survey that collected data on household evacuation intentions in the Coos Bay area235

between May and September 2020. There were 258 respondents who returned the ques-236

tionnaire, which covers their evacuation intentions, expected milling process, and choices of237

transportation modes and destinations, as well as psychological variables and demographic238

characteristics. More information can be found in Chen et al. (2021). Probability distribu-239

tions on these variables are utilized to model the heterogeneous evacuation actions from the240

data shown in Table 2.241

The analyses that follow are based on the ETE model in which the time to clear the risk area242

is a function of authorities’ decision time, warning dissemination time, evacuation prepara-243

tion time, and evacuation travel time (Lindell et al., 2019). Evacuation preparation time,244

which is often called “milling” (Wood et al., 2018), has two components – 1) psychological245

preparation, which involves information seeking and processing to make evacuation decisions;246

and 2) logistical preparation, which involves performing essential tasks (e.g., packing bags247

and securing the home) before leaving (Lindell and Perry, 2012). Evacuation travel time248

is a function of evacuees’ choices of transportation mode, evacuation route, and evacuation249

destination.250

Modeling evacuation from a distant tsunami requires data on authorities’ decision time and251

warning receipt time. In the absence of these data, the results of the following analyses252
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do not apply to distant tsunamis. Modeling evacuation from a local tsunami is simpler253

because long and strong earthquake shaking is a reliable environmental cue to tsunami254

onset. Consequently, people who recognize this environmental cue have authorities’ decision255

time and warning dissemination time equal to zero.256

Moreover, the following analyses include sensitivity analyses that examine the impact of a257

plausible range of variation in the input variables on the estimated tsunami mortality rate.258

As discussed below, these sensitivity analyses can provide useful information for decision259

making and emergency planning.260

Evacuation participation (0: stay; 1: leave) is the protective action that an individual261

agent selects in response to earthquake shaking or a tsunami warning in this model. Ac-262

cording to the Coos Bay community survey, 81% of the respondents intend to evacuate,263

regardless of their location inside (“compliant evacuees”) or outside (“shadow evacuees”)264

of the tsunami inundation zone. Thus, 81% is used as the evacuation participation rate in265

this model, with a sensitivity analysis on how a change in this rate would impact tsunami266

mortalities. Evacuees’ origins are determined by their locations when an earthquake occurs267

or a tsunami warning is received. Thus, there is spatial and temporal variability in the dis-268

tribution of population locations based on factors such as time of day, season, and weather269

(Wang et al., 2016). This study utilized 2020 US Census (United State Census Bureau, 2020)270

data to define the origins of 26,363 agents. The scenario examined in this study assumes271

that all residents are at home, as on a weekend or at night.272

The tsunami evacuation intentions questionnaire asked respondents to report how much time273

they expected it would take them to prepare to evacuate. As shown in equation 1,274

f(x;α, β) =
βαxα−1e−βx

Γ(α)
for x > 0 α, β > 0 (1)

applying maximum likelihood estimation to the survey data produced α = 1.659 and β =275

6.494 as the estimated parameters of the gamma function for the milling time distribution.276

As Figure 2 indicates, both the Weibull and lognormal distributions provided poorer fits277

(AIC and BIC) to the data.278

Transportation mode choice is a critical factor that affects evacuation success. Agents279

can choose to evacuate either by foot or by personal vehicle in this model (0: car; 1: foot).280

In Coos Bay, 70% of the survey respondents reported that they would evacuate by car and281

only 27% expected to evacuate by foot (Chen et al., 2021).282

Destination choice is also obtained from the survey and a probability of choosing a specific283

destination is assigned to each evacuee based on their distance from the available destina-284

tions. A gamma function yields the best goodness-of-fit statistics among the three candidate285

functions for the destination selection probability, shown in Figure 3. Probability functions286

were developed separately for evacuation by foot and by car, with maximum likelihood esti-287

mation yielding α = 1.920 and β = 500 for evacuation by foot and α = 1.646 and β = 1.745288

for evacuation by car.289

After agents choose their expected evacuation destinations, the model assigns them to the290

shortest route that is calculated by the A* algorithm (Hart et al., 1968) on the road291

network. To simulate the behavior of people who encounter an evacuation impediment such292

as flood on the road while evacuating, agents divert to an alternate route. Specifically,293

when agents observe that the next intersection is blocked, they select a different leg of the294
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Figure 2: Expected preparation time from survey data and fitted models: (a) data histogram and probability
density function; (b) Quantiles-Quantiles plot; (c) cumulative density function; (d) Probabilities-Probabilities
plot.

intersection. The model assumes an equal probability of choosing each of the unblocked legs.295

The mechanism for assigning a travel speed varies, depending on which transportation296

mode an agent chooses (foot or car). Driving speed is determined by the IDM car following297

model (Treiber et al., 2000) and the vehicle speed limit on that roadway. Pedestrian walking298

speed is determined by the slope of the ground on which the pedestrians are walking, through299

an advanced Hiking Function (Tobler, 1993; Wood and Schmidtlein, 2012). To adjust for300

differences in walking speeds between daily walking and a tsunami evacuation, we modified301

the hiking function based on tsunami evacuation drill data that were collected from 2016-302

2018 (Cramer et al., 2018). In these evacuation drills, 136 evacuees’ trajectory data (source:303

author) were recorded by GNSS embedded mobile devices. The walking speed and slope304

data were used to modify the hiking function; the modified function is shown in Equation 2.305

Speed = 1.65× e(−2.30×abs(Slope−0.004)) (2)

To reduce computational cost and optimize simulation speed, the model assigns an average306

slope to the road segment between each pair of intersections and agents who walk on that307

segment will have the walking speed that is determined by Equation 2. When conduct-308

ing sensitivity analyses for different values of walking speed, the modified hiking function309

is disabled when a fixed walking speed is used. Moreover, pedestrian walking speed is re-310
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Figure 3: Intended evacuation destination from survey data and fitted models.

duced based on the conservative value when liquefaction and landslide block a road surface311

(Schmidtlein and Wood, 2015; Gabel et al., 2019). More details are discussed in Section312

2.3.3.313

2.3.2. Built Environment314

The model’s built environment components include the road network and non-retrofitted315

bridges. The transportation network was obtained from OpenStreetMap (OSM, 2021) and316

updated manually by the authors based on the 2020 Google Earth satellite image (Google,317

2021). All roads are considered to be two-way one-lane streets, as a conservative assumption318

(Wang et al., 2016). This model also assumes that all agents, whether as pedestrians or in319

cars, follow the road network to their destinations. Alternative evacuation routes are not320

included in this simulation, such as swimming across streams or cutting through open fields321

or parking lots.322

Non-retrofitted bridges were located using a study by (Gabel et al., 2019). These bridges323

are not expected to survive after an M9 CSZ earthquake (Gabel et al., 2019), so they are324

assumed to be undrivable and unwalkable in this analysis. These bridges are:325

• Virginia Ave. on Pony Creek326

• Vermont Ave. on Pony Creek327

• Broadway Ave. on Pony Creek328
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2.3.3. Natural environment329

Natural Environment components that are integrated in this model include tsunami inun-330

dation, terrain elevation and slope, liquefaction susceptibility, and landslide susceptibility.331

Tsunami inundation layer: This model simulates an M9 CSZ earthquake and tsunami332

using the XXL tsunami inundation model (Witter et al., 2011; Priest et al., 2013). The333

tsunami inundation layer includes variation in the flow depth and velocity every 30 seconds334

for each 15-m grid cell from the time the tsunami is generated to eight hours after it reaches335

the Coos Bay peninsula. The inundation model assumes “bare earth”, so the impact of large336

buildings on water flow was not included.337

Topographical elevation and slope: A 10-m digital elevation model created by U.S.338

Geological Survey (USGS) (Oregon Geospatial Enterprise Office, 2017) is included as the339

surface topographical elevation data. In this simulation, elevation data is utilized to calculate340

the surface slope to inform agents’ walking speed using the modified hiking function shown in341

Equation 2. The slope is calculated by using elevation change (∆y) divided by the Euclidean342

distance (∆x) change between two points, expressed as (Slope = ∆y/∆x).343

Landslides and liquefaction: Evacuation routes can become undrivable and even unwalk-344

able due to liquefaction, rockfalls, and lateral spreading (Gabel et al., 2019). Susceptibility345

to both landslide and liquefaction for Coos Bay (Franczyk et al., 2019) is included in this346

model to estimate which road segments will be disrupted.347

Landslide susceptibility is calculated based on proximity to landslide deposits, susceptible348

geologic units, slope angles, and existing landslide inventory. Areas are classified into four349

susceptibility levels – low, moderate, high, and very high (Burns et al., 2016; Franczyk et al.,350

2019). Liquefaction susceptibility is calculated from the cohesionless sediments, based on351

Youd and Perkins (1978); Madin and Burns (2013). Areas are classified into five susceptibility352

levels – very low, low, moderate, high, and very high. This produces conservative liquefaction353

levels because it assumes relatively shallow groundwater (Madin and Burns, 2013).354

Table 3 shows the landslide and liquefaction susceptibility levels that are used in this simu-355

lation. The spatial areas having a moderate or higher susceptibility level of either landslide356

or liquefaction are assumed to be disrupted after an M9.0 CSZ earthquake. We consider the357

moderate level as a threshold to be conservative and realistic. This threshold also has been358

used by local authorities (Gabel et al., 2019) to build the Coos Bay BtW model. As shown359

in Figure 4, 54% of the transportation network is exposed to at least a moderate level of360

liquefaction-landslide susceptibility and 21% is exposed to at least a high level. Thus, the361

transportation network is likely to be significantly disrupted after an M9.0 earthquake.362

In this simulation, a street that is predicted to be disrupted by landslide or liquefaction363

is assigned a rocky or muddy road surface that prevents evacuees from driving through the364

impediment and makes walking the only feasible transportation mode from that point. Wood365

and Schmidtlein (2012) adapted a speed conservation value from Soule and Goldman (1972),366

which is applied to the travel speed of people walking on muddy or rocky terrain surfaces.367

These values are shown in Table 4.368

3. Results and Discussion369

Figure 5 shows the overall visualization of one run of the model from 0 – 60 mins after the370

M9 earthquake. The model assumes that 1) the deformation of subduction zone completes371
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Table 3: Landslide and liquefaction susceptibility for network disruption in ABMS

Landslide Susceptibility
Low (0) Moderate (1) High (1) Very high (1)

Very low (0) 0 1 1 1
Low (0) 0 1 1 1
Moderate (1) 1 1 1 1
High (1) 1 1 1 1

Liquefaction
Susceptibility

Very high (1) 1 1 1 1
Using a disjunctive decision rule, a spatial area with an index value of at least moderate (54%)
or high (21%) level is assumed to be disrupted after an M9 earthquake

Roads

Susceptibility Level
High
Moderate

Figure 4: Coos Bay landslide and liquefaction susceptibility
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Table 4: Speed conservation values used in modeling pedestrian walking speed (Wood and Schmidtlein, 2012)

Feature Type Speed Conservation Value
Road (Paved) 1
Unpaved Trails 0.9091
Dune Trails (Packed Sand) 0.5556
Muddy Bog 0.5556
Beach (Loose Sand) 0.476
Speed conservation values adapted from Soule and Goldman (1972)

and tsunami is triggered at the source when t = 0 mins; 2) people start the milling process372

and evacuate either by foot or car; and 3) the first tsunami wave (the highest in a CSZ M9373

scenario) arrives in the Barview area (due to being the most westward) at t = 15 – 20 mins,374

and starts to inundate to the west shoreline of the peninsula. The first wave arrives at the375

north side around t = 30 mins and the east side of Coos Bay around t = 40 mins. Most376

mortalities are observed on roads located in the west shoreline area, followed by the north377

and east sides.378

Residents
Destinations
Pedestrians
Cars

t = 0 minutes t = 10 minutes t = 20 minutes

t = 30 minutes t = 40 minutes t = 60 minutes

Figure 5: Model screenshot by time

Two scenarios are examined in this study. Scenario 1 assumes that the tsunami is the only379

cause of disaster impacts in the community. Consequently, the road network functions at380

full capacity until it is inundated by the tsunami waves. Thus, Scenario 1 provides a baseline381

for assessing the sensitivity of the modeling results to a plausible range of variation in the382

values of the input variables. Scenario 2 assumes that an M9 earthquake damages the383

road network and impedes the evacuation process. According to this scenario, driving may384

not be possible due to the heavy disruption of roads in large scale landslides, liquefaction,385
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lateral spreading, dropped power lines, debris, and traffic congestion. This assumption has386

also been applied to previous studies of earthquake and tsunami preparedness in Washington387

(WGS, 2021), Oregon (DOGAMI, 2020), and California (Cal OES, 2021).388

3.1. Scenario 1: variable testing with no network disruption389

Sensitivity analysis is applied to examine the impact of variation in each model variable on390

the expected tsunami mortality rate. A Monte Carlo method is employed to capture the391

probabilistic nature of the inputs and to create an interpretive mean.392

3.1.1. Evacuation Decision and Milling Time393

Figure 6 shows the sensitivity analysis for the impact of the evacuation participation rate394

and milling time on mortality rate among the inundation zone population. Consistent with395

previous studies (Mas et al., 2013; Wang et al., 2016), these two variables have a significant396

impact on the estimated mortality rate. The larger the percentage of people who decide397

to evacuate and the less time people delay before departure, the lower the mortality rate398

will be. However, the impact of milling time on mortality rate is complex, which yields two399

conclusions.400

First, the change in the evacuation participation rate shows a smaller impact when milling401

time increases. For example, there is no decrease in mortality rate when evacuation par-402

ticipation changes from 10% to 100% at 50 mins of milling time, whereas there is a 88%403

mortality rate decrease when evacuation participation changes from 10% to 100% at 5 mins404

of milling time. That is, the effect of decreasing milling time depends on the evacuation405

participation rate.406

Second, the curves that represent high evacuation participation rates in Figure 6 show an “S”407

shape that indicates the rate of change in mortality is much larger in the middle range of the408

x-axis from 15 minutes to 25 minutes. Given that the first tsunami wave will arrive on the409

west side of the Coos Bay peninsula around 15 minutes after the earthquake, the mortality410

rate will increase substantially as milling time increases past that threshold. Conversely,411

when milling time is less than 5 minutes and 100% of people decide to evacuate, the curve412

shows that the mortality rate is extremely low (less than 2%). Thus, the results indicate413

that reducing the milling time is an important objective for tsunami preparedness programs414

but it will be most effective when the evacuation participation rate is high.415

This result confirms the policy of public authorities on the US west coast (WGS, 2021;416

DOGAMI, 2020; Cal OES, 2021) to emphasize “Do Not Wait” in their tsunami educational417

brochures and other outreach products to encourage people to depart as soon as possible418

after earthquake shaking subsides. Although our simulation findings support this recommen-419

dation, gaps remain in the response from local residents. Comparing the survey results of420

the two variables from Coos Bay (gray areas) with the sensitivity analysis curves shows that421

the mortality rate is fairly low if based on residents’ intended milling time, but it can still422

be improved by further decreasing milling time and encouraging more people to evacuate.423

The same holds true for Crescent City, CA (Chen et al., 2021).424

3.1.2. Mode Choice and Walking Speed425

Coastal authorities in the CSZ advise evacuating by foot if possible, not only because of426

potential traffic congestion, but because the road network is likely to be so disrupted that427
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Figure 6: Estimated mortality rate of the inundation zone population as a function of milling time and
evacuation participation

driving may not be feasible to evacuate from a local tsunami. Of course, roads could be428

flooded by a distant tsunami for which no earthquake shaking could be felt. However, distant429

tsunamis such as those from the 1964 Alaska and 2011 Japanese tsunamis will take hours to430

reach the Oregon coast. Consequently, people will have the option of driving when distant431

tsunamis threaten. Thus, research is needed to examine authorities’ recommendation to432

evacuate by foot and help emergency managers decide when to advise pedestrian evacuation433

instead of vehicular evacuation. This section analyzes the impact of mode choice and walking434

speed during evacuation from a local tsunami, and answers the question: Can walking beat435

driving? If so, in what situations?436

Figure 7 shows how walking speed and mode choice influence tsunami mortality estimates.437

As walking speed increases beyond 1 m/s, the estimated mortality rate decreases as the438

walking percentage increases. Conversely, as walking speed decreases below 1 m/s, the439

estimated mortality rate decreases as the walking percentage decreases. This result indicates440

that if everyone can walk faster than 1 m/s, it is beneficial for more people to evacuate on441

foot. Given that 0.91 m/s is a slow walking speed and 1.22 m/s is a moderate walking442

speed threshold for unimpaired adults (Knoblauch et al., 1996; Langlois et al., 1997; Wood443

and Schmidtlein, 2012; Fraser et al., 2014), it follows that evacuating on foot is better444

than evacuating by car if people can walk faster than the slow walking speed threshold.445

This finding also implies that if people who can walk faster than 1 m/s choose to walk,446
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Figure 7: Mortality rate changes by mode choice and walking speed

road network capacity can be saved for mobility impaired people so they can avoid traffic447

congestion during their evacuation. This is consistent with the finding that 30% evacuation448

by car and 70% evacuation by foot is the critical threshold for tsunami evacuation in Seaside449

(Mostafizi et al., 2019b). Similarly, vehicular traffic capacity can be saved for those 30% of450

the risk area population so they can reach safety in time. However, the question remains:451

Who should evacuate by car? Even though our finding suggests that most unimpaired452

people should walk to save traffic capacity for the vulnerable population, risk area residents453

may behave differently. The survey results show that only 21% of the respondents (95%454

C.I. 16%–27%) expect to evacuate by foot in Coos Bay (Chen et al., 2021), even though455

Oregon authorities encourage everyone to do so (DOGAMI, 2020). It is unclear whether this456

disparity is due to people not having received this recommendation or if they have received457

it and have chosen not to comply with it.458

It should be noted that the results shown in Figure 7 describe the overall picture of evacuation459

in Coos Bay, but the situation may be different for people living in unique areas that are460

a long distance from safety, so smaller-scale ABMS or BtW analyses are needed. However,461

given that the high ground spine in the middle of the Coos Bay peninsula provides a nearby462

evacuation destination, few people are likely to be in that situation.463

3.1.3. Other Variables and Combinations of Variables464

Many variables may vary during the evacuation and local authorities need to prioritize465

resources by deciding which variables or combinations of variables have the greatest impact466

on expected mortalities. Figure 8 shows the impact on mortality rate of variation in the467

plausible range of single and multiple variables. The estimated mortality rate for the Coos468
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25

Figure 8: Impact range of model variables

Bay inundation zone is just over 57% if all of the variables are at their most probable469

values (the vertical line in the center of the figure) and the bottom bar shows that there470

is almost no variation in mortality rate as car speed varies from its plausible lower bound471

(15 mph) to its plausible upper bound (35 mph), whereas it ranges from 45–85% if milling472

time ranges from 0–20 mins. However, the results show that variation in Milling Time and473

Evacuation Decision have the greatest impact on expected mortality when these variables474

are analyzed individually. This result is consistent with the discussion for Figures 6 and475

7 and previous simulation research (Mas et al., 2013; Mostafizi et al., 2019b). Variation476

in Distance to Destination also has a relatively large impact range. Specifically, the lowest477

mortality occurs when evacuees choose the closest destination and increases when they choose478

farther destinations. This is because agents tend to spend more time traveling on the roads479

within the inundation area when they choose farther destinations. This is especially true for480

residents living on the west coastal shoreline where the Cape Arago Highway stretches along481

the shoreline in the inundation zone as the only major road to connect this area to other482

regions in Coos Bay. When a tsunami strikes, some people who lack knowledge about the483

inundation area and first wave arrival time may travel on this highway to seek safety farther484

inland. We observed this “overshooting” behavior in the survey data from both Coos Bay485
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and Crescent City (Chen et al., 2021). The maximum car speed has the lowest impact (2% on486

mortality rate) of all variables, which is consistent with findings from Mostafizi et al. (2019b)487

showing the impact range of max car speed is about 2.5 percentage points from 15–35 mph.488

This finding confirms that driving travel speed is not determined by the maximum speed one489

can drive at any moment but, rather, by overall road capacity and traffic conditions, which490

are well-described in traffic flow theory.491

The upper panel in Figure 8 shows the impact range of simultaneously changing two or more492

variables to their lowest plausible levels. Although Decision + Distance and Walking Speed +493

Decision have the largest ranges of impact for any pair of variables, there is a similar impact494

range for other pairs. However, the results show even greater reductions in mortality esti-495

mates when more than two variables are at their lowest plausible levels. For example, when496

optimizing evacuation participation, milling time, and removing destinations in inundation497

zone, the estimated mortality rate shrinks to less than 20%. When optimizing evacuation498

participation, milling time, and choosing closest destinations outside of the inundation zone499

(the second to the top bar), the results show that almost all residents can be saved. More-500

over, increasing walking speed from 1.3 m/s to 5 m/s in addition to four other factors (the501

top bar) produces a similar result. This result indicates that even evacuees who walk slowly502

are very likely to reach safety in time if they leave immediately for a destination outside of503

the inundation zone by shortest route. Local authorities should emphasize this finding when504

deciding what information to communicate in their tsunami preparedness programs.505

3.2. Scenario 2: considering network disruption when only walking is available506

This section analyzes how network disruptions impact tsunami mortalities when walking is507

the only option due to road network disruption of the type described in Section 2.3.3. Three508

scenarios are included in this analysis: 1) when areas with at least moderate landslide-509

liquefaction susceptibility are disrupted; 2) when only areas with at least high landslide-510

liquefaction susceptibility are disrupted; and 3) when there is no network disruption.511

As Figure 9 indicates, there is a nonlinear decrease in estimated mortality as walking speed512

increases for all three scenarios. That the slopes of the lines decrease as walking speed513

increases indicates that the marginal effect of changing walking speed on estimated mortality514

is larger in the lower part of the range. For example, an increase from 0.5 m/s (slow walk)515

to 1 m/s (normal walk) would yield a 24 percentage point decrease in estimated mortality.516

However, when areas of the road network with at least moderate susceptibility are disrupted,517

the model shows an increase of 9 percentage points in estimated mortality for all walking518

speeds in the 0.25–1.5 m/s range, compared with the results for no disruption. When only519

areas with a high level of susceptibility are disrupted, there is only a slight decrease in520

estimated mortality, compared with the results for moderate disruption. When walking speed521

increases to 1.5 m/s (fast walk), the impact of network disruption is minimal and almost all522

people can successfully evacuate. Previous research on Seaside (Wang et al., 2016) found a523

similar decrease to the one shown in Figure 9. In their study, estimated mortality decreased524

to zero when walking speed increased to 2 m/s when there was no disruption. This similarity525

suggests that similar results would be found in communities whose inundation zones have526

similarly ready access to high ground.527

The results from the ABMS is consistent with the results from the BtW model established528

for Coos Bay (Gabel et al., 2019) with slight differences shown in Figure 9. The similarity529
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between the two models is likely due to the similar input parameters. For example, the survey530

data from Coos Bay suggest a gamma distribution (α = 1.66, β = 6.49) to model milling531

time with mean = 10.77 mins; this distribution is used in the ABMS to define agents’ milling532

time, whereas the BtW model assumes a 10 min fixed milling time (Gabel et al., 2019). The533

slight differences between the two results are also due to the inputs of the two models: the534

parameters are stochastic in the ABMS but fixed in the BtW model, even though they have535

similar means. The resulting similarities provide convergent validation of the two models, so536

that jurisdictions can choose either one depending on the purpose of study. The two models537

should not be considered mutually exclusive; a mixed-method model could be applied to538

more accurately assess evacuation results (Wood and Schmidtlein, 2012). However, the539

convergence is based on the assumption that the survey respondents have accurate estimates540

of the time it takes them to prepare to leave. This is probably the case for those who541

have “grab and go” kits but is less likely for those who do not. In particular, research on542

the planning fallacy suggests that the survey data are underestimates for some respondents543

(Buehler et al., 2010).544

Figure 9: Network disruption impact: ABMS and BtW model result comparison

4. Conclusion545

Although previous tsunami evacuation simulations have considered the natural environment,546

built environment, and social system in their models, many data inputs were arbitrary547

assumptions or adapted from studies of non-emergency situations, so the simulation results548

may not accurately reflect what would happen in a tsunami evacuation. The present study549

addressed this limitation by integrating behavioral data from community surveys into an550

ABMS for a CSZ community. Three distinct contributions of this study include: 1) using551

the PADM as a guide for collecting data on people’s expected evacuation behavior and the552
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integration of these data into the ABMS; 2) using empirical data from evacuation drills to553

refine people’s evacuation walking speeds; 3) considering the impact of earthquake-caused554

landslides and liquefaction on tsunami evacuation as a substantial aspect of the multi-hazard555

situation; and 4) integrating the LCD component from the Wood and Schmidtlein (2012)556

BtW model – walking speed conservation by surface terrain and slope. By integrating557

the natural environment, built environment, and social system, this model incorporates558

substantial aspects of the real world into a multi-hazard ABMS. The simulation results559

indicate that milling time and evacuation participation have significant non-linear impacts560

on tsunami mortality estimates, which is consistent with Wang et al. (2016). The impact561

of milling time on the mortality rate shows an “S” curve, so the impact of milling time562

on estimated mortality varies the most when evacuation participation is highest. When563

comparing which transportation mode people should take, the model result shows that more564

people can reach safety in time when they choose to walk and are able to walk faster than 1565

m/s (slow walk). These findings support an important point for tsunami education programs566

in CSZ communities. Since the majority of Coos Bay respondents expected to evacuate by567

car instead of on foot, local authorities need to emphasize the need for pedestrian evacuation568

in their tsunami education programs.569

This study also makes a significant contribution to understanding the impact of different570

variables on tsunami mortality estimates. Evacuation success is more sensitive to walking571

speed, milling time, evacuation participation, and choice of the closest safe location than572

to other variables. Consistent with previous research, car speed has little impact on evac-573

uation results. Further, this study also compared the sensitivities of different combinations574

of variables. Tsunami mortality estimates are minimized when maximizing evacuation par-575

ticipation, minimizing milling time, and choosing the closest safe destination outside of the576

inundation zone. Furthermore, to validate this model, this study compared the ABMS re-577

sults with the BtW model results from Gabel et al. (2019) for Coos Bay. Even though the578

BtW model relies on a Geographical Information System rather than an ABMS, this study’s579

preliminary comparison indicates a good match between results from the two models.580

Finally, every study has limitations, as does this one. The agent decision and behavior is581

based on survey data and drill data, rather than data from an actual tsunami evacuation, so582

the results might not accurately predict the response to an actual tsunami. Nonetheless, the583

data from the evacuation expectations surveys appear to be consistent with data from post-584

tsunami evacuation surveys (Lindell et al., 2015; Dhellemmes et al., 2016; Blake et al., 2018).585

Future research should investigate 1) the impact of more complex agent-agent interactions,586

such as leader-follower behaviors and grouping behaviors (Chen et al., 2020), as well as car587

abandonment (Wang et al., 2016); 2) the impact of building damage from earthquake before588

tsunami (Gomez-Zapata et al., 2021); 3) authorities’ decision and warning dissemination589

processes for distant tsunamis; and 4) validation of the model using data from actual tsunami590

evacuations.591

Code/Data availability592
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